Edgar

Micah Blake McCurdy
micah@hockeyviz.com

Rochester NY
RIT Hockey Analytics Conference
October 21, 2017
Models, As Abstractly As Possible

A *model* is a way to gather some important aspects of an interesting thing, so that we can benefit.
Friendly, Familiar Models

- Model cars for children
- Models from physics:
Friendly, Familiar Models

- Model cars for children
- Models from physics:
 - Planetary motion
 - Friction
 - Relativity
Friendly, Familiar Models

- Model cars for children
- Models from physics:
 - Planetary motion
 - Friction
 - Relativity
- Wind-tunnel models from aerodynamics design
- Mental models for everyday life
 - Excitement
 - Danger
- Statistical models from the social sciences:
Friendly, Familiar Models

- Model cars for children
- Models from physics:
 - Planetary motion
 - Friction
 - Relativity
- Wind-tunnel models from aerodynamics design
- Mental models for everyday life
 - Excitement
 - Danger
- Statistical models from the social sciences:
 - Behavioural economics
 - Criminology
Friendly, Familiar Models

- Model cars for children
- Models from physics:
 - Planetary motion
 - Friction
 - Relativity
- Wind-tunnel models from aerodynamics design
- Mental models for everyday life
 - Excitement
 - Danger
- Statistical models from the social sciences:
 - Behavioural economics
 - Criminology
 - Hockey!
What Makes A Model Good?

- Accuracy
- Efficiency
- Interpretability
Relevance

Model Inputs → ??? → Model outputs
Relevance

Model Inputs \rightarrow ??? \rightarrow Model outputs

(mostly relevant) \rightarrow ??? \rightarrow (always relevant)
When the inputs are combined by minimizing some function, that makes the model *statistical*. Most of the best hockey models (Luszczyszyn, Perry) are statistical.
Model Classification

- When the inputs are combined by minimizing some function, that makes the model *statistical*. Most of the best hockey models (Luszczyszyn, Perry) are statistical.
- When the inputs are combined by some encoding of the mechanics of the thing being modelled, that makes the model *phenomenological*.
Model Classification

- When the inputs are combined by minimizing some function, that makes the model *statistical*. Most of the best hockey models (Luszczyszyn, Perry) are statistical.

- When the inputs are combined by some encoding of the mechanics of the thing being modelled, that makes the model *phenomenological*.
 - When the combining is done systematically with oversight, that makes the model *scientific*.
Edgar

I made what I think is a “scientific” model in this sense and I called it: Edgar
Which aspects are important?

- Unblocked shot rates and their locations.
- Penalty rates
- Shooting talent
- Goaltending talent
- Who takes the shots
- Rest

I estimate them all with statistics.
Isolating Player Ability

Player Isolate, Erik Karlsson

- Even-Strength Offence 24%
- Power-Play 24%
- Relative to League
 - Shooting: +0.8%
 - Penalties Drawn: -30%
 - Penalties Taken: -27%
- Even-Strength Defence
- Penalty-Kill 12%
Isolating Player Ability: Shot Maps

Shot rate maps are adjusted for score

Some day: adjusted for teammates (and then maybe zone usage and competition)
Shooting and Goaltending Abilities

All measured *relative to where shots are taken.*
Excellent shooters:

- Jake Guentzel +6.5%
- Patrik Laine +6.2%
- Sven Baertschi +5.1%
- Jannik Hansen +4.5%

(Also Ho-Sang, Malkin, Barkov, Gourde, Athanasiou, Oshie)

Regressed 2/3 of the way to the mean
Goalies

Excellent goalies:

- Brayden Holtby +1.3%
- Matt Murray +1.2%
- Carey Price +1.2%
- Henrik Lundqvist +1.2%

(Also Smith, Grubauer, Crawford, Gibson, Reimer, Bobrovsky)

Regressed 1/2 of the way to the mean
Additional Sneakiness

Penalty Rates and Shot Propensities: Untouched! (for now)

Rookies treated as league average, except for a chosen few. (estimated by Hannah Stuart)

Some ad-hoc regression for people with very little relevant icetime.
Isolating Team Abilities

Estimate team rosters

Team Isolate, OTT

Even-Strength Offence

Relative to League
Shooting: +0.29%
Goaltending: +0.21%
Penalties Drawn: -7%
Penalties Taken: -3%

Even-Strength Defence

Power-Play

Penalty-Kill

Adjust for rest
Simulation Mechanism

Model shots and penalties as Poisson processes with the measured rates.

For every shot taken:

- Choose a location
- Choose a shooter
- Adjust for shooting talent
- Adjust for goalie
- See if it’s a goal

And so on, for sixty or perhaps sixty-five minutes.
Information in Excess of Guessing

My preferred measure of accuracy for single games:

$$100 \log_2 2p$$

where p is the probability for the outcome that happened.

Really just log-loss, scaled onto 0 (guessing) and 100 (perfection).
Results From 2016-2017

<table>
<thead>
<tr>
<th>Creator</th>
<th>Model</th>
<th>Information In Excess of Guessing (per game)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perry</td>
<td>Salad</td>
<td>5.03</td>
</tr>
<tr>
<td>Nandakumar</td>
<td>Feline Frenzy</td>
<td>4.65</td>
</tr>
<tr>
<td>Luszczyszyn</td>
<td>Preszczyszyn</td>
<td>4.36</td>
</tr>
<tr>
<td>M. Edgar</td>
<td></td>
<td>4.13</td>
</tr>
<tr>
<td>Sprigings</td>
<td>DTMAH</td>
<td>4.10</td>
</tr>
<tr>
<td>M. Cordelia</td>
<td></td>
<td>2.11</td>
</tr>
</tbody>
</table>
Thanks!